We propose a combination of the Eulerian Lagrangian Localised Adjoint Method (ELLAM) and the Modified Method of Characteristics (MMOC) for time-dependent advection-domina\-ted PDEs. The combined scheme, so-called GEM scheme, takes advantages of both ELLAM scheme (mass conservation) and MMOC scheme (easier computations), while at the same time avoids their disadvantages (respectively, harder tracking around the injection regions, and loss of mass). We present a precise analysis of mass conservation properties for these three schemes, and after achieving global mass balance, an adjustment yielding local volume conservation is then proposed. Numerical results for all three schemes are then compared, illustrating the advantages of the GEM scheme. A convergence result of the MMOC scheme, motivated by our previous work on the convergence of ELLAM schemes, is provided, which can be extended to obtain the convergence of GEM scheme.
翻译:我们提出将欧莱兰·拉格朗吉亚地方化联合法(ELLAM)和经修改的特征方法(MMOC)相结合,用于时间依赖的对流式对流式对流式对流式对流式对流式对流式对流式对流式对流式对流式对流式对流式对流式组合。组合办法,即所谓的GEM计划,既利用ELLAM计划(质量保护)的优势,又利用MMOC计划(方便计算)的优势,同时避免其劣势(分别针对注射区进行更严格的跟踪,以及质量损失 ) 。 我们对这三个计划的质量保护特性进行了精确的分析,然后提出实现全球质量平衡的调整,从而实现地方数量保护。然后对所有这三项计划的数值结果进行比较,说明GEM计划的优势。提供了MOC计划的一个趋同结果,这是我们先前关于ELLAM计划整合的工作所激发的,可以扩大这一结果,以便实现GEM计划的趋同。