Convolutional neural networks (CNNs) have constantly achieved better performance over years by introducing more complex topology, and enlarging the capacity towards deeper and wider CNNs. This makes the manual design of CNNs extremely difficult, so the automated design of CNNs has come into the research spotlight, which has obtained CNNs that outperform manually-designed CNNs. However, the computational cost is still the bottleneck of automatically designing CNNs. In this paper, inspired by transfer learning, a new evolutionary computation based framework is proposed to efficiently evolve CNNs without compromising the classification accuracy. The proposed framework leverages multi-source domains, which are smaller datasets than the target domain datasets, to evolve a generalised CNN block only once. And then, a new stacking method is proposed to both widen and deepen the evolved block, and a grid search method is proposed to find optimal stacking solutions. The experimental results show the proposed method acquires good CNNs faster than 15 peer competitors within less than 40 GPU-hours. Regarding the classification accuracy, the proposed method gains its strong competitiveness against the peer competitors, which achieves the best error rates of 3.46%, 18.36% and 1.76% for the CIFAR-10, CIFAR-100 and SVHN datasets, respectively.


翻译:多年来,通过引入更复杂的地形学,扩大CNN更深、更广大的CNN,CNN的手工设计非常困难,因此CNN的自动设计进入了研究焦点,获得的CNN已经超过手动设计的CNN的功能。然而,计算成本仍然是自动设计CNN的瓶颈。在转移学习的启发下,新的基于进化的计算框架被提议在不损及分类准确性的情况下有效发展CNN。拟议的框架利用了多来源域名,这些域名比目标域名数据集小,只能发展一个通用CNN的区块。然后,提出了新的堆叠方法,以扩大和深化进化的区块,并提出了寻找最佳堆叠解决办法的网格搜索方法。实验结果显示,拟议的方法在不到40个GPU小时的时间内比15个同侪竞争者更快地获得良好的CNNCNN。关于分类准确性的拟议方法提高了对同行竞争者的强大竞争力,而同行竞争者则比目标域网域数据集小,只有一次。然后,提出了新的堆叠方法,以扩大和深化进方式来寻找最佳的区块。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月8日
Arxiv
13+阅读 · 2021年7月20日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员