We present an R package bssm for Bayesian non-linear/non-Gaussian state space modelling. Unlike the existing packages, bssm allows for easy-to-use approximate inference based on Gaussian approximations such as the Laplace approximation and the extended Kalman filter. The package accommodates also discretely observed latent diffusion processes. The inference is based on fully automatic, adaptive Markov chain Monte Carlo (MCMC) on the hyperparameters, with optional importance sampling post-correction to eliminate any approximation bias. The package implements also a direct pseudo-marginal MCMC and a delayed acceptance pseudo-marginal MCMC using intermediate approximations. The package offers an easy-to-use interface to define models with linear-Gaussian state dynamics with non-Gaussian observation models, and has an Rcpp interface for specifying custom non-linear and diffusion models.
翻译:我们为Bayesian非线性/非Gaussian州空间建模提供了R包 bssm。 与现有的包件不同, bsm允许基于Gaussian近似值,如Laplace近似值和扩展的Kalman过滤器, 容易使用近似值的大致推论。 包件还包含离散观测的潜伏扩散过程。 推论基于超参数的完全自动、适应性的Markov链 Monte Carlo( MMC ), 选择重要取样后校准以消除任何近似偏差。 包件还安装了直接的伪边际 MCMC 和延迟接受的假边际 MC。 包件提供了一个容易使用的界面, 用来用非Gaussian观察模型来定义线性- Gaussian 状态动态模型的模型, 并有一个用于指定自定义非线性非线性模型和传播模型的 Rcpp 界面 。