Deep neural operators are recognized as an effective tool for learning solution operators of complex partial differential equations (PDEs). As compared to laborious analytical and computational tools, a single neural operator can predict solutions of PDEs for varying initial or boundary conditions and different inputs. A recently proposed Wavelet Neural Operator (WNO) is one such operator that harnesses the advantage of time-frequency localization of wavelets to capture the manifolds in the spatial domain effectively. While WNO has proven to be a promising method for operator learning, the data-hungry nature of the framework is a major shortcoming. In this work, we propose a physics-informed WNO for learning the solution operators of families of parametric PDEs without labeled training data. The efficacy of the framework is validated and illustrated with four nonlinear spatiotemporal systems relevant to various fields of engineering and science.
翻译:深神经操作员被公认为是学习复杂部分差异方程式(PDEs)的解决方案操作员的有效工具。与艰苦的分析和计算工具相比,单一神经操作员可以预测PDEs对于不同初始或边界条件和不同投入的解决方案。最近提议的一个Wavelet神经操作员(WNO)就是这样一个操作员,它利用波子的时间频率定位优势,有效地捕捉空间领域的元件。WNO已被证明是操作员学习很有希望的方法,但框架的数据饥饿性质是一个重大缺陷。在这项工作中,我们提议建立一个物理学知情的WNO,用于学习无标签培训数据的参数参数参数组群的解决方案操作员。框架的功效通过与工程和科学领域相关的四个非线性随机系统得到验证和演示。