We study the mismatched successive refinement problem where one uses Gaussian codebooks to compress an arbitrary memoryless source with successive minimum Euclidean distance encoding under the quadratic distortion measure. Specifically, we derive achievable refined asymptotics under both the joint excess-distortion probability (JEP) and the separate excess-distortion probabilities (SEP) criteria. For both second-order and moderate deviations asymptotics, we consider two types of codebooks: the spherical codebook where each codeword is drawn independently and uniformly from the surface of a sphere and the i.i.d. Gaussian codebook where each component of each codeword is drawn independently from a Gaussian distribution. We establish the achievable second-order rate-region under JEP and we show that under SEP any memoryless source satisfying mild moment conditions is strongly successively refinable. When specialized to a Gaussian memoryless source (GMS), our results provide an alternative achievability proof with specific code design. We show that under JEP and SEP, the same moderate deviations constant is achievable. For large deviations asymptotics, we only consider the i.i.d. Gaussian codebook since the i.i.d. Gaussian codebook has better performance than the spherical codebook in this regime for the one layer mismatched rate-distortion problem (Zhou, Tan, Motani, TIT, 2019). We derive achievable exponents of both JEP and SEP and specialize our results to a GMS, which appears to be a novel result of independent interest.
翻译:我们研究了不匹配的连续完善问题, 即使用高斯的代码库来压缩任意的无记忆源, 在二次扭曲测量中, 以连续最小的 Euclidean 距离编码来压缩任意的无记忆源。 具体地说, 我们根据联合过度扭曲概率( JEP) 和不同的超扭曲概率( SEP) 标准, 得出了可实现的精细的无记忆区块。 对于第二级和中度偏差( SEP), 我们考虑了两种类型的代码库: 球形代码库, 每一个代码都是独立和统一地从球体表面和 i. d. 高斯的代码, 每个代码的每个组件都是独立于高斯分布的。 我们建立了可实现的第二级利率区域。 在SEP下, 任何没有记忆的源源头线线线线线都是可以重新定义的。 在高斯高斯的代码中, 我们的结果提供了一种可实现的可实现性差值。 高斯( ) 高斯的值值值比我们的标准值要高一比高。 。 高地标准值的值比高的值的值值值值要高。