Image data set from a multi-spectral animal imaging system is used to address two issues: (a) registering the oscillation in optical coherence tomography (OCT) images due to mouse eye movement and (b) suppressing the shadow region under the thick vessels/structures. Several classical and AI-based algorithms in combination are tested for each task to see their compatibility with data from the combined animal imaging system. Hybridization of AI with optical flow followed by Homography transformation is shown to be working (correlation value>0.7) for registration. Resnet50 backbone is shown to be working better than the famous U-net model for shadow region detection with a loss value of 0.9. A simple-to-implement analytical equation is shown to be working for brightness manipulation with a 1% increment in mean pixel values and a 77% decrease in the number of zeros. The proposed equation allows formulating a constraint optimization problem using a controlling factor {\alpha} for minimization of number of zeros, standard deviation of pixel value and maximizing the mean pixel value. For Layer segmentation, the standard U-net model is used. The AI-Pipeline consists of CNN, Optical flow, RCNN, pixel manipulation model, and U-net models in sequence. The thickness estimation process has a 6% error as compared to manual annotated standard data.
翻译:多光谱动物成像系统产生的图像数据集被用于解决两个问题:(a) 登记由于鼠眼眼睛运动而导致的光一致性摄影图像震动(OCT)的振动;(b) 在厚厚的容器/结构下压制阴影区域。对每个任务都测试了几种古典和基于AI的混合算法,看它们是否与综合动物成像系统的数据兼容。在光学流动和光学变异之后将AI与光流混合在一起,结果显示登记是有效的(orrelation value>0.7)。Resnet50主干线显示比著名的U-net模型运行得更好,以显示损失值为0.9的影子区域探测。一个简单到执行的分析方程式被显示在亮度操作中工作,平均像素值增加1%,零数减少77%。拟议的方程式允许使用控制因子 ALpha}来制定限制优化问题,以尽量减少零数、像素标准偏差值和最大值等值。对于图断值而言,标准 U-net 的U-net 模型是SIMIS 的比较模型。