A computational framework that leverages data from self-consistent field theory simulations with deep learning to accelerate the exploration of parameter space for block copolymers is presented. This is a substantial two-dimensional extension of the framework introduced in [1]. Several innovations and improvements are proposed. (1) A Sobolev space-trained, convolutional neural network (CNN) is employed to handle the exponential dimension increase of the discretized, local average monomer density fields and to strongly enforce both spatial translation and rotation invariance of the predicted, field-theoretic intensive Hamiltonian. (2) A generative adversarial network (GAN) is introduced to efficiently and accurately predict saddle point, local average monomer density fields without resorting to gradient descent methods that employ the training set. This GAN approach yields important savings of both memory and computational cost. (3) The proposed machine learning framework is successfully applied to 2D cell size optimization as a clear illustration of its broad potential to accelerate the exploration of parameter space for discovering polymer nanostructures. Extensions to three-dimensional phase discovery appear to be feasible.
翻译:介绍了一个计算框架,利用自相符合的实地理论模拟数据,并进行深层学习,以加快对块状共聚合物参数空间的探索,这是[1] 中引入的框架的二维实质性扩展,提出了若干创新和改进建议。 (1) 利用Sobolev 由空间训练的进化神经网络(CNN),处理离散的局部平均单体密度场的指数性增加,并大力实施空间转换和旋转,以加速预测的、实地理论密集的汉密尔顿。 (2) 引入基因对抗网络(GAN),以高效和准确地预测马鞍点,即当地平均单体密度场,而不用使用梯度下降的方法来使用训练成套方法。这一GAN方法可以节省大量记忆和计算成本。 (3) 拟议的机器学习框架被成功地应用于2D细胞尺寸优化,以明确显示其加速探索发现聚合纳米结构参数空间的广泛潜力。