0-dimensional persistent homology is known, from a computational point of view, as the easy case. Indeed, given a list of $n$ edges in non-decreasing order of filtration value, one only needs a union-find data structure to keep track of the connected components and we get the persistence diagram in time $O(n\alpha(n))$. The running time is thus usually dominated by sorting the edges in $\Theta(n\log(n))$. A little-known fact is that, in the particularly simple case of studying the sublevel sets of a piecewise-linear function on $\mathbb{R}$ or $\mathbb{S}^1$, persistence can actually be computed in linear time. This note presents a simple algorithm that achieves this complexity. An implementation will soon be available in Gudhi.
翻译:从计算角度来看,已知的0维持久性同族体是一个简单的例子。事实上,如果在过滤值的非递减顺序中列出一列以美元计的边缘,人们只需使用工会确定的数据结构来跟踪连接的组件,我们就能及时获得持久性图表$O(n\alpha(n))$。因此,运行时间通常以$Theta(n\log(n))$来排序边缘。一个鲜为人知的事实是,在特别简单的例子中,在研究以$\mathbb{R}}$或$\mathbb{S\}1$为单位的单线性函数子级数据集时,持久性实际上可以在线性时间计算。本说明提出了一种简单的方法,可以实现这一复杂性。在Gudhi将很快可以使用。