Quasi-polycyclic (QP for short) codes over a finite chain ring $R$ are a generalization of quasi-cyclic codes, and these codes can be viewed as an $R[x]$-submodule of $\mathcal{R}_m^{\ell}$, where $\mathcal{R}_m:= R[x]/\langle f\rangle$, and $f$ is a monic polynomial of degree $m$ over $R$. If $f$ factors uniquely into monic and coprime basic irreducibles, then their algebraic structure allow us to characterize the generator polynomials and the minimal generating sets of 1-generator QP codes as $R$-modules. In addition, we also determine the parity check polynomials for these codes by using the strong Gr\"{o}bner bases. In particular, via Magma system, some quaternary codes with new parameters are derived from these 1-generator QP codes.


翻译:用于固定链环的微粒周期(QP)代码 $R$是准周期代码的概括,这些代码可被视为$[x]$的子模块,其中$=mathcal{R ⁇ m:=R[x]/\langle f\rangle $;$f$是一元多元度,单位超过$R$。如果美元是单子和共性基本代码中独有的硬度和共性要素,那么它们的代谢结构允许我们将生成的多元代码和最小生成的一元QP代码定性为$R$。此外,我们还通过使用坚固的 Gr\"{o}bner基底来确定这些代码的等值检查多元值。特别是,通过Magma系统,一些带有新参数的四元代码来自这些1-gener QP 代码。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
12+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年1月12日
Arxiv
0+阅读 · 2022年1月11日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
已删除
将门创投
12+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员