Solutions to many partial differential equations satisfy certain bounds or constraints. For example, the density and pressure are positive for equations of fluid dynamics, and in the relativistic case the fluid velocity is upper bounded by the speed of light, etc. As widely realized, it is crucial to develop bound-preserving numerical methods that preserve such intrinsic constraints. Exploring provably bound-preserving schemes has attracted much attention and is actively studied in recent years. This is however still a challenging task for many systems especially those involving nonlinear constraints. Based on some key insights from geometry, we systematically propose an innovative and general framework, referred to as geometric quasilinearization (GQL), which paves a new effective way for studying bound-preserving problems with nonlinear constraints. The essential idea of GQL is to equivalently transfer all nonlinear constraints into linear ones, through properly introducing some free auxiliary variables. We establish the fundamental principle and general theory of GQL via the geometric properties of convex regions, and propose three simple effective methods for constructing GQL. We apply the GQL approach to a variety of partial differential equations, and demonstrate its effectiveness and remarkable advantages for studying bound-preserving schemes, by diverse challenging examples and applications which cannot be easily handled by direct or traditional approaches.
翻译:例如,密度和压力对于流体动态的方程是积极的,而在相对论的情况下,流体速度是受光速等的上限。 广泛认识到,至关重要的是制定约束性保留数字的方法,以保持这些内在限制。 探索可被证实的约束性保留计划吸引了许多注意力,近年来正在积极研究。然而,对于许多系统,特别是涉及非线性限制的系统来说,这仍然是一项具有挑战性的任务。根据几何学的一些关键见解,我们系统地提出了一个创新和一般框架,称为几何准线化(GQL),它为在非线性限制下研究约束性保留问题铺平了一条新的有效途径。GQL的基本想法是通过适当引入一些自由的辅助变量,将所有非线性约束性约束性限制转移到线性限制中。我们通过对等区域进行几何性特性的特性来确立GQL的基本原则和一般理论,并提出建造GQL的三种简单有效方法。我们采用GQL方法,作为几何不同程度的准度准性准性准性准性准性准性准性准性(GQL),为在非线性约束性限制性问题研究问题的新方法中,不能通过直接地研究任何具有挑战性的公式,通过不同性、直接的公式来展示优势性、以展示性、展示性、展示性、展示性、展示性、直接分析性、展示性、展示性、展示性、展示性等等等等等等等的优势性方法,以研究不同性、演示式研究不同性、展示性、演示性、直接法。