Generative retrieval is a promising new neural retrieval paradigm that aims to optimize the retrieval pipeline by performing both indexing and retrieval with a single transformer model. However, this new paradigm faces challenges with updating the index and scaling to large collections. In this paper, we analyze two prominent variants of generative retrieval and show that they can be conceptually viewed as bi-encoders for dense retrieval. Specifically, we analytically demonstrate that the generative retrieval process can be decomposed into dot products between query and document vectors, similar to dense retrieval. This analysis leads us to propose a new variant of generative retrieval, called Tied-Atomic, which addresses the updating and scaling issues by incorporating techniques from dense retrieval. In experiments on two datasets, NQ320k and the full MSMARCO, we confirm that this approach does not reduce retrieval effectiveness while enabling the model to scale to large collections.
翻译:暂无翻译