A locating-dominating set $D$ of a graph $G$ is a dominating set of $G$ where each vertex not in $D$ has a unique neighborhood in $D$, and the Locating-Dominating Set problem asks if $G$ contains such a dominating set of bounded size. This problem is known to be $\mathsf{NP-hard}$ even on restricted graph classes, such as interval graphs, split graphs, and planar bipartite subcubic graphs. On the other hand, it is known to be solvable in polynomial time for some graph classes, such as trees and, more generally, graphs of bounded cliquewidth. While these results have numerous implications on the parameterized complexity of the problem, little is known in terms of kernelization under structural parameterizations. In this work, we begin filling this gap in the literature. Our first result shows that Locating-Dominating Set, when parameterized by the solution size $d$, admits no $2^{o(d \log d)}$ time algorithm unless the Exponential Time Hypothesis fails; as a corollary, we also show that no $n^{o(d)}$ time algorithm exists under ETH, implying that the naive $\mathsf{XP}$ algorithm is essentially optimal. We present an exponential kernel for the distance to cluster parameterization and show that, unless $\mathsf{NP-hard} \subseteq \mathsf{NP-hard}/$\mathsf{poly}$, no polynomial kernel exists for Locating-Dominating Set when parameterized by vertex cover nor when parameterized by distance to clique. We then turn our attention to parameters not bounded by neither of the previous two, and exhibit a linear kernel when parameterizing by the max leaf number; in this context, we leave the parameterization by feedback edge set as the primary open problem in our study.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月23日
Arxiv
0+阅读 · 2023年11月23日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员