We show that a Frobenius sturcture is equivalent to a dually flat sturcture in information geometry. We define a multiplication structure on the tangent spaces of statistical manifolds, which we call the statistical product. We also define a scalar quantity, which we call the Yukawa term. By showing two examples from statistical mechanics, first the classical ideal gas, second the quantum bosonic ideal gas, we argue that the Yukawa term quantifies information generation, which resembles how mass is generated via the 3-points interaction of two fermions and a Higgs boson (Higgs mechanism). In the classical case, The Yukawa term is identically zero, whereas in the quantum case, the Yukawa term diverges as the fugacity goes to zero, which indicates the Bose-Einstein condensation.
翻译:我们显示佛罗比尼乌斯的构造相当于信息几何中的双平结构。 我们定义了统计元体相切空间的乘数结构, 我们称之为统计产品。 我们还定义了一种卡路里的数量, 我们称之为汤川术语。 我们通过展示统计力学的两个例子, 首先是古典理想气体, 其次是量子肉质理想气体, 我们争辩说, 汤川术语量化了信息生成, 这类似于两个发酵和Higgs Boson(希格斯机制)的三点相互作用所产生的质量。 在典型的案例中, 汤川术语是相同的零, 而就量子而言, 汤川术语随着 fungacity 变为零而有所不同, 这表明了博斯- Einstein Condenation 。