Understanding forest health is of great importance for the conservation of the integrity of forest ecosystems. The monitoring of forest health is, therefore, indispensable for the long-term conservation of forests and their sustainable management. In this regard, evaluating the amount and quality of dead wood is of utmost interest as they are favorable indicators of biodiversity. Apparently, remote sensing-based machine learning techniques have proven to be more efficient and sustainable with unprecedented accuracy in forest inventory. However, the application of these techniques is still in its infancy with respect to dead wood mapping. This study investigates for the first time the automatic classification of individual coniferous trees into five decay stages (live, declining, dead, loose bark, and clean) from combined airborne laser scanning (ALS) point clouds and CIR images using three Machine Learning methods - 3D point cloud-based deep learning (PointNet), Convolutional Neural Network (CNN), and Random Forest (RF). All models achieved promising results, reaching overall accuracy (OA) up to 90.9%, 90.6%, and 80.6% for CNN, RF, and PointNet, respectively. The experimental results reveal that the image-based approach notably outperformed the 3D point cloud-based one, while spectral image texture is of the highest relevance to the success of categorizing tree decay. Our models could therefore be used for automatic determination of single tree decay stages and landscape-wide assessment of dead wood amount and quality using modern airborne remote sensing techniques with machine/deep learning. The proposed method can contribute as an important and rigorous tool for monitoring biodiversity in forest ecosystems.
翻译:了解森林健康对于保护森林生态系统的完整性非常重要,因此,监测森林健康对于长期养护森林及其可持续管理是不可或缺的,因此,监测森林健康对于长期养护森林及其可持续管理是不可或缺的。在这方面,评估枯木的数量和质量是极为有意义的,因为它们是生物多样性的有利指标。显然,遥感的机器学习技术已经证明更有效率和可持续性,森林库存的准确性是前所未有的。然而,这些技术的应用仍处于初创阶段,在枯木绘图方面,这些技术的应用仍然处于初级阶段。这项研究首次调查了将单个隐形树自动分类为五个衰变阶段(活、衰减、死、松树皮和清洁),从空中激光扫描点云和CIR图像合在一起,是极其有意义的,因为使用三种机器学习方法----3D点云基深层学习(PointNet)、革命神经网络(CNN)和兰特森林(RF),所有模型都取得了有希望的结果,总体精确度达到90.9%、90.6%和80.6%,CNN、RF和PN的地网络的地形和80.6%。实验结果显示,以遥感系统为基础的生态系统质量方法为重要的基础,因此,利用一个基于图像的图像和机路标的标准化工具的比值评估,其价值价值价值价值价值价值价值价值,其价值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值比值。