Nonlinear extensions to the active subspaces method have brought remarkable results for dimension reduction in the parameter space and response surface design. We further develop a kernel-based nonlinear method. In particular we introduce it in a broader mathematical framework that contemplates also the reduction in parameter space of multivariate objective functions. The implementation is thoroughly discussed and tested on more challenging benchmarks than the ones already present in the literature, for which dimension reduction with active subspaces produces already good results. Finally, we show a whole pipeline for the design of response surfaces with the new methodology in the context of a parametric CFD application solved with the Discontinuous Galerkin method.
翻译:主动子空间方法的非线性扩展为参数空间和反应表面设计减少维度带来了显著成果。我们进一步开发了以内核为基础的非线性方法。我们特别将它引入一个更广泛的数学框架,这个框架还设想了多变量目标功能的参数空间的缩小。实施过程比文献中已有的基准更具有挑战性,对此,通过主动子空间减少维度已经产生良好结果。最后,我们展示了整个反应表面设计管道,在以不连续的加勒尔金方法解决的参数 CFD 应用中采用了新方法。