In cities around the world, locating public parking lots with vacant parking spots is a major problem, costing commuters time and adding to traffic congestion. This work illustrates how a dataset of Geo-tagged images from a mobile phone camera, can be used in navigating to the most convenient public parking lot in Johannesburg with an available parking space, detected by a neural network powered-public camera. The images are used to fine-tune a Detectron2 model pre-trained on the ImageNet dataset to demonstrate detection and segmentation of vacant parking spots, we then add the parking lot's corresponding longitude and latitude coordinates to recommend the most convenient parking lot to the driver based on the Haversine distance and number of available parking spots. Using the VGG Image Annotation (VIA) we use images from an expanding dataset of images, and annotate these with polygon outlines of the four different types of objects of interest: cars, open parking spots, people, and car number plates. We use the segmentation model to ensure number plates can be occluded in production for car registration anonymity purposes. We get an 89% and 82% intersection over union cover score on cars and parking spaces respectively. This work has the potential to help reduce the amount of time commuters spend searching for free public parking, hence easing traffic congestion in and around shopping complexes and other public places, and maximize people's utility with respect to driving on public roads.
翻译:世界各地的城市都存在一个大问题,将公共停车场定位为空置停车位,让通勤人员花费时间并增加交通堵塞。 这项工作展示了如何利用手机相机中地理标记图像的数据集,导航到约翰内斯堡最方便的公共停车场,并配备一个由神经网络动力-公共摄像头探测到的停车空间。图像用来微调在图像网数据集上预先训练的探测器2模型,以显示对空置停车位的探测和分割,然后我们添加停车场相应的经度和纬度坐标,以推荐以Haversine距离和可用停车位数为基础的司机最方便的停车场。我们利用VGGI图像注释(VIA),使用扩大的图像数据集中的图像,并用四类不同对象的多边线进行微调:汽车、露天停车位、人和车牌。我们使用分解模式确保车牌可以被隔开,为汽车注册匿名目的制作。我们用89%和82%的车位向司机推荐最方便的停车场。我们利用VGGH图像说明,我们利用扩大的图像图象图象图图图图图图图图图图图图,并进行公共车辆的快速搜索。