We consider online monitoring of the network event data to detect local changes in a cluster when the affected data stream distribution shifts from one point process to another with different parameters. Specifically, we are interested in detecting a change point that causes a shift of the underlying data distribution that follows a multivariate Hawkes process with exponential decay temporal kernel, whereby the Hawkes process is considered to account for spatio-temporal correlation between observations. The proposed detection procedure is based on scan score statistics. We derive the asymptotic distribution of the statistic, which enables the self-normalizing property and facilitates the approximation of the instantaneous false alarm probability and the average run length. When detecting a change in the Hawkes process with non-vanishing self-excitation, the procedure does not require estimating the post-change network parameter while assuming the temporal decay parameter, which enjoys computational efficiency. We further present an efficient procedure to accurately determine the false discovery rate via importance sampling, as validated by numerical examples. Using simulated and real stock exchange data, we show the effectiveness of the proposed method in detecting change while enjoying computational efficiency.
翻译:我们考虑对网络事件数据进行在线监测,以便在受影响的数据流分布过程从一个点转向另一个点,并带有不同的参数时,发现一个组群的局部变化。 具体地说,我们有兴趣发现一个变化点,导致基本数据分布随着指数衰减时间内核的多变的霍克斯进程而发生变化,因此霍克斯进程被认为考虑到观测之间的时空相关性。提议的检测程序以扫描分统计为基础。我们从统计的无规律分布中得出统计数据,使属性能够自我正常化,便于接近瞬时虚假警报概率和平均运行长度。在用非加速自我刺激的方式发现霍克斯进程的变化时,该程序不需要在假设具有计算效率的时衰变参数时估计变化后的网络参数。我们进一步提出一个有效的程序,以便通过重要取样准确地确定虚假发现率,并用数字实例加以验证。我们使用模拟和真实的存量交换数据,展示了拟议方法在使用计算效率的同时检测变化的有效性。