Pose estimation of an uncooperative space resident object is a key asset towards autonomy in close proximity operations. In this context monocular cameras are a valuable solution because of their low system requirements. However, the associated image processing algorithms are either too computationally expensive for real time on-board implementation, or not enough accurate. In this paper we propose a pose estimation software exploiting neural network architectures which can be scaled to different accuracy-latency trade-offs. We designed our pipeline to be compatible with Edge Tensor Processing Units to show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space. The neural networks were tested both on the benchmark Spacecraft Pose Estimation Dataset, and on the purposely developed Cosmo Photorealistic Dataset, which depicts a COSMO-SkyMed satellite in a variety of random poses and steerable solar panels orientations. The lightest version of our architecture achieves state-of-the-art accuracy on both datasets but at a fraction of networks complexity, running at 7.7 frames per second on a Coral Dev Board Mini consuming just 2.2W.
翻译:对不合作的空间物体进行空间常住物体估计是近距离运行自主的关键资产。 在这方面,单筒照相机因其系统要求低而是一种有价值的解决办法。 但是,相关的图像处理算法要么计算成本太高,无法实时在机上实施,要么不够准确。 在本文中,我们提议了一种利用神经网络结构的成形估计软件,该软件可以按不同精度-时间偏差的取舍大小进行开发。我们设计了一条管道,以便与Edge Tensor处理装置兼容,以显示低功率机器学习加速器能够如何在空间进行人工智能开发。神经网络在基准空间航天器浮雕模拟数据集和特意开发的宇宙摄影现实数据集上都进行了测试,这些数据集描绘了一种随机配置的COSMO-SkyMed卫星和可控太阳板方向。我们最轻的建筑版本在两个数据集上都实现了最新精确度,但有一部分网络复杂度,每秒7.7框架运行在Clar Dev Board Mini just 2.W。