The behavior of self driving cars may differ from people expectations, (e.g. an autopilot may unexpectedly relinquish control). This expectation mismatch can cause potential and existing users to distrust self driving technology and can increase the likelihood of accidents. We propose a simple but effective framework, AutoPreview, to enable consumers to preview a target autopilot potential actions in the real world driving context before deployment. For a given target autopilot, we design a delegate policy that replicates the target autopilot behavior with explainable action representations, which can then be queried online for comparison and to build an accurate mental model. To demonstrate its practicality, we present a prototype of AutoPreview integrated with the CARLA simulator along with two potential use cases of the framework. We conduct a pilot study to investigate whether or not AutoPreview provides deeper understanding about autopilot behavior when experiencing a new autopilot policy for the first time. Our results suggest that the AutoPreview method helps users understand autopilot behavior in terms of driving style comprehension, deployment preference, and exact action timing prediction.
翻译:自驾驶汽车的行为可能与人们的期望不同,(例如自动驾驶可能会意外放弃控制)。这种预期错配可能导致潜在和现有用户不信任自驾驶技术,并可能增加事故发生的可能性。我们提出了一个简单而有效的框架,即AutoPreview,以使消费者能够在部署之前预览现实世界驱动环境中的目标自动驾驶潜在行动。对于一个特定目标自动驾驶,我们设计了一项代表政策,将目标自动驾驶行为复制为可解释的行动表现,然后可以在网上查询,以便进行比较,并构建一个准确的精神模型。为了证明其实用性,我们提出了一个AutoPreview的原型,与CARLA模拟器结合,同时提出了两个框架的潜在使用案例。我们进行了一项试点研究,以调查AutoPreview是否在首次实施新的自动驾驶政策时更深入地了解自动驾驶行为。我们的结果表明,AutoPreview方法有助于用户了解驾驶风格理解、部署偏好和精确行动时间预测方面的自动驾驶行为。