Successful applications of complex vision-based behaviours underwater have lagged behind progress in terrestrial and aerial domains. This is largely due to the degraded image quality resulting from the physical phenomena involved in underwater image formation. Spectrally-selective light attenuation drains some colors from underwater images while backscattering adds others, making it challenging to perform vision-based tasks underwater. State-of-the-art methods for underwater color correction optimize the parameters of image formation models to restore the full spectrum of color to underwater imagery. However, these methods have high computational complexity that is unfavourable for realtime use by autonomous underwater vehicles (AUVs), as a result of having been primarily designed for offline color correction. Here, we present DeepSeeColor, a novel algorithm that combines a state-of-the-art underwater image formation model with the computational efficiency of deep learning frameworks. In our experiments, we show that DeepSeeColor offers comparable performance to the popular "Sea-Thru" algorithm (Akkaynak & Treibitz, 2019) while being able to rapidly process images at up to 60Hz, thus making it suitable for use onboard AUVs as a preprocessing step to enable more robust vision-based behaviours.
翻译:在水下成功地应用基于视觉的复杂行为已经落后于在陆地和空中领域的进展。这主要是因为水下图像形成中物理现象导致图像质量退化,水下图像形成过程中产生的物理现象导致图像质量下降。 光谱选择性光减色从水下图像中抽出一些颜色, 而背影却增加了其他颜色, 使得在水下执行基于视觉的任务具有挑战性。 水下彩色修正最先进的方法优化了图像形成模型的参数, 以恢复水下图像的全部色谱。 然而, 这些方法具有很高的计算复杂性, 不利于自主水下车辆( AUVs)实时使用, 因为主要设计为离线彩色校正设计。 我们在这里展示了DeepSe Color, 这是一种新型的算法, 将最先进的水下图像形成模型与深学习框架的计算效率结合起来。 在我们的实验中, DeepSe Sea Color提供了与流行的“Sear- Thru”算法( Akahynak & Treibtz, 2019) 的类似性表现。 同时能够快速处理高达60Hz的图像, 使其在板上更稳健健的动作。</s>