When a plane electromagnetic wave impinges upon a diffraction grating or other periodic structures, reflected and transmitted waves propagate away from the structure in different radiation channels. A diffraction anomaly occurs when the outgoing waves in one or more radiation channels vanish. Zero reflection, zero transmission and perfect absorption are important examples of diffraction anomalies, and they are useful for manipulating electromagnetic waves and light. Since diffraction anomalies appear only at specific frequencies and/or wavevectors, and may require the tuning of structural or material parameters, they are relatively difficult to find by standard numerical methods. Iterative methods may be used, but good initial guesses are required. To determine all diffraction anomalies in a given frequency interval, it is necessary to repeatedly solve the diffraction problem for many frequencies. In this paper, an efficient numerical method is developed for computing diffraction anomalies. The method relies on nonlinear eigenvalue formulations for scattering anomalies and solves the nonlinear eigenvalue problems by a contour-integral method. Numerical examples involving periodic arrays of cylinders are presented to illustrate the new method.
翻译:当一个平面电磁波撞击到不同辐射通道的悬浮压或其他周期结构时,反射和传送波波会从不同辐射通道的结构中扩散出去。当一个或一个以上辐射通道的离散波消失时,就会发生反射异常。零反射、零传播和完全吸收是分射异常的重要例子,对于调控电磁波和光是有用的。由于偏差异常只出现在特定的频率和/或波变器上,可能需要对结构或材料参数进行调控,因此它们相对难以通过标准的数字方法找到。可能会使用迭代方法,但需要良好的初步猜想。要确定一个特定频率间隔中的所有偏差异常,就必须反复解决许多频率的偏差问题。在本文中,为计算偏差异常开发了一种有效的数字方法。这种方法依靠非线性乙值配方的配方来分散异常,用等同法解决非线性乙基值问题。关于定期气瓶阵列的数值示例将用来说明新的方法。