Scene Graph Generation (SGG) aims to build a structured representation of a scene using objects and pairwise relationships, which benefits downstream tasks. However, current SGG methods usually suffer from sub-optimal scene graph generation because of the long-tailed distribution of training data. To address this problem, we propose Resistance Training using Prior Bias (RTPB) for the scene graph generation. Specifically, RTPB uses a distributed-based prior bias to improve models' detecting ability on less frequent relationships during training, thus improving the model generalizability on tail categories. In addition, to further explore the contextual information of objects and relationships, we design a contextual encoding backbone network, termed as Dual Transformer (DTrans). We perform extensive experiments on a very popular benchmark, VG150, to demonstrate the effectiveness of our method for the unbiased scene graph generation. In specific, our RTPB achieves an improvement of over 10% under the mean recall when applied to current SGG methods. Furthermore, DTrans with RTPB outperforms nearly all state-of-the-art methods with a large margin.


翻译:场景图生成(SGG)的目的是利用对象和对称关系来构建一个结构化的场景代表,这有利于下游任务;然而,目前的SGG方法通常会因为长期分发培训数据而出现亚最佳场景图形生成;为解决这一问题,我们提议在场景图生成时使用前比亚斯(RTPB)进行抵抗训练。具体地说,RTPB使用基于分布的先前偏差来提高模型在培训中较不频繁的关系上的检测能力,从而改进尾巴类别中的模型通用性。此外,为了进一步探索对象和关系的背景信息,我们设计了一个称为“双变换器(DTrans)”的背景编码主干网。我们用一个非常受欢迎的基准(VG150)进行广泛的实验,以展示我们用于不偏向场景图生成的方法的有效性。具体地说,我们的RTPB在应用当前SGG方法时在平均值下取得了超过10%的改进。此外,带有RTPB的DTRV几乎超越了所有有较大幅度的状态方法。

8
下载
关闭预览

相关内容

专知会员服务
23+阅读 · 2021年7月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员