Nonlinear dynamical effects are crucial to the operation of many agile robotic systems. Koopman-based model learning methods can capture these nonlinear dynamical system effects in higher dimensional lifted bilinear models that are amenable to optimal control. However, standard methods that lift the system state using a fixed function dictionary before model learning result in high dimensional models that are intractable for real time control. This paper presents a novel method that jointly learns a function dictionary and lifted bilinear model purely from data by incorporating the Koopman model in a neural network architecture. Nonlinear MPC design utilizing the learned model can be performed readily. We experimentally realized this method on a multirotor drone for agile trajectory tracking at low altitudes where the aerodynamic ground effect influences the system's behavior. Experimental results demonstrate that the learning-based controller achieves similar performance as a nonlinear MPC based on a nominal dynamics model in medium altitude. However, our learning-based system can reliably track trajectories in near-ground flight regimes while the nominal controller crashes due to unmodeled dynamical effects that are captured by our method.


翻译:非线性动态效应对于许多灵活机器人系统的运作至关重要。 Koopman 的模型学习方法可以捕捉高维升起双线型模型中的非线性动态系统效应,这些模型可以进行最佳控制。然而,在模型学习之前使用固定功能字典提升系统状态的标准方法可以产生高维模型,对于实时控制来说是难于操作的。本文展示了一种新型方法,即通过将Koopman 模型纳入神经网络结构,完全从数据中学习功能词典和提升双线性模型。使用所学模型的非线性 MPC 设计可以随时进行。我们实验后在高空的多轨轨迹跟踪多轨道无人驾驶飞机上发现了这种方法,该方法对系统的行为产生影响。实验结果表明,基于学习的控制器根据中高度的标称动态模型,取得了类似非线性MPC的性能。然而,我们基于学习的系统可以可靠地跟踪近地飞行系统中的轨迹,而名义控制器碰撞则由于我们的方法所捕捉到的未建模的动态效应而得到。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
专知会员服务
115+阅读 · 2019年12月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年4月9日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
专知会员服务
115+阅读 · 2019年12月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员