This paper presents a closed-loop magnetic manipulation framework for robotic transesophageal echocardiography (TEE) acquisitions. Different from previous work on intracorporeal robotic ultrasound acquisitions that focus on continuum robot control, we first investigate the use of magnetic control methods for more direct, intuitive, and accurate manipulation of the distal tip of the probe. We modify a standard TEE probe by attaching a permanent magnet and an inertial measurement unit sensor to the probe tip and replacing the flexible gastroscope with a soft tether containing only wires for transmitting ultrasound signals, and show that 6-DOF localization and 5-DOF closed-loop control of the probe can be achieved with an external permanent magnet based on the fusion of internal inertial measurement and external magnetic field sensing data. The proposed method does not require complex structures or motions of the actuator and the probe compared with existing magnetic manipulation methods. We have conducted extensive experiments to validate the effectiveness of the framework in terms of localization accuracy, update rate, workspace size, and tracking accuracy. In addition, our results obtained on a realistic cardiac tissue-mimicking phantom show that the proposed framework is applicable in real conditions and can generally meet the requirements for tele-operated TEE acquisitions.


翻译:本文介绍了机器人切除性心电图(TEE)获取的闭环磁操纵框架。与以往侧重于连续机器人控制的体外机器人超声波收购工作不同,我们首先调查磁控制方法的使用,以便更直接、直观和准确地操纵探测器的分端。我们修改了标准TEE探测器,将永久磁和惯性测量单元传感器附加在探针上,用软绳索取代软气管,只包含传输超声波信号的电线,并显示通过外部永久磁力实现6-DOF本地化和5DOF闭环控制探测器,其基础是内部惯性测量和外部磁场遥感数据的融合。拟议方法并不要求操作器和探测器的复杂结构或动作,与现有的磁操纵方法相比较。我们进行了广泛的实验,以验证框架在本地化准确性、更新率、工作空间大小和跟踪精确性方面的有效性。此外,我们在现实的心电离心机测量和远程采集要求中所获得的结果也符合拟议的条件。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月7日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员