A subset $A \subset \mathbb R^2$ is said to avoid distance $1$ if: $\forall x,y \in A, \left\| x-y \right\|_2 \neq 1.$ In this paper we study the number $m_1(\mathbb R^2)$ which is the supremum of the upper densities of measurable sets avoiding distance 1 in the Euclidean plane. Intuitively, $m_1(\mathbb R^2)$ represents the highest proportion of the plane that can be filled by a set avoiding distance 1. This parameter is related to the fractional chromatic number $\chi_f(\mathbb R^2)$ of the plane. We establish that $m_1(\mathbb R^2) \leq 0.25647$ and $\chi_f(\mathbb R^2) \geq 3.8991$.
翻译:$A\subset \ mathbb R% 2$ 子集, 用来避免距离$1, 如果: $\fall x, y\ in A,\left\ x-y\right\\\\ 2\neq 1. 美元, 我们研究的是该平面的分色体数 1 (\ mathbbb R% 2) $, 即可测量体密度的上方距离 1 的比值。 直观地说, $_ 1 (\mathbbb R% 2) 美元是能够由设定的避免距离1 填充的平面的最大比例 。 这个参数与该平面的分数 $\ chi_ f (\mathbb R% 2) 有关。 我们确定$ 1 (\mathb R%2) le5647$ 和 $\\\chi_ f (\mathbb R% 2) \ge 3.8991$ 。