Despite the popularity of the false discovery rate (FDR) as an error control metric for large-scale multiple testing, its close Bayesian counterpart the local false discovery rate (lfdr), defined as the posterior probability that a particular null hypothesis is false, is a more directly relevant standard for justifying and interpreting individual rejections. However, the lfdr is difficult to work with in small samples, as the prior distribution is typically unknown. We propose a simple multiple testing procedure and prove that it controls the expectation of the maximum lfdr across all rejections; equivalently, it controls the probability that the rejection with the largest p-value is a false discovery. Our method operates without knowledge of the prior, assuming only that the p-value density is uniform under the null and decreasing under the alternative. We also show that our method asymptotically implements the oracle Bayes procedure for a weighted classification risk, optimally trading off between false positives and false negatives. We derive the limiting distribution of the attained maximum lfdr over the rejections, and the limiting empirical Bayes regret relative to the oracle procedure.


翻译:尽管假发现率(FDR)作为大规模多次测试的错误控制度量受到欢迎,但作为个别否定假设的事后概率(lfdr)被定义为特定无效假设的事后概率(lfdr)是更直接的相关标准,可以证明和解释个别拒绝。然而,Lifdr很难在小型样本中工作,因为先前的分布通常不为人知。我们提出了一个简单的多重测试程序,并证明它控制了所有拒绝者对最大失利率的预期;同样,它控制了以最大p价值拒绝的概率(lfdr)是虚假发现的可能性。我们的方法是在不知情的情况下操作的,假设在无效情况下的p-value密度是统一的,而在替代情况下则在下降。我们还表明,我们的方法是随机地执行甲板湾程序,进行加权分类风险,最佳地交换假正数和假负数之间的交易。我们得出了对最大负值的最大失利值的有限分配,并限制经验性贝耶斯对程序感到遗憾。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月7日
Arxiv
14+阅读 · 2020年12月17日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员