Quantum Machine Learning (QML) has come into the limelight due to the exceptional computational abilities of quantum computers. With the promises of near error-free quantum computers in the not-so-distant future, it is important that the effect of multi-qubit interactions on quantum neural networks is studied extensively. This paper introduces a Quantum Convolutional Network with novel Interaction layers exploiting three-qubit interactions increasing the network's expressibility and entangling capability, for classifying both image and one-dimensional data. The proposed approach is tested on three publicly available datasets namely MNIST, Fashion MNIST, and Iris datasets, to perform binary and multiclass classifications and is found to supersede the performance of the existing state-of-the-art methods.
翻译:暂无翻译