This paper considers the problem of constructing a confidence sequence for bounded random processes. Building upon the gambling approach pioneered by Hendriks (2018) and Jun and Orabona (2019) and following the recent work of Waudby-Smith and Ramdas (2020) and Orabona and Jun (2021), this paper revisits the idea of Cover (1991)'s universal portfolio in constructing confidence sequences and demonstrates new properties, based on a natural \emph{two-horse race} perspective on the gambling approach. The main result of this paper is a new algorithm based on a mixture of lower bounds, which closely approximates the performance of Cover's universal portfolio with only constant per-round time complexity. A higher-order generalization of a lower bound in (Fan et al, 2015), which is invoked in the proposed algorithm, may be of independent interest.
翻译:本文根据亨德里克斯(2018年)、Jun和Orabona(2019年)提出的赌博方法,继瓦乌德比·史密斯和拉姆达斯(2020年)以及奥拉博纳和Jun(2021年)最近的工作之后,重新审视了盖伊(1991年)在建立信任序列方面的通用投资组合构想,并展示了赌博方法方面的新特性。本文的主要结果是基于下限组合的新算法,它非常接近盖伊公司通用投资组合的绩效,且其全时复杂性保持不变。 在拟议的算法中引用的较低约束范围(Fan等人,2015年)的更高层次的一般化(Fan等人,2015年)可能具有独立的利益。