The goal of this paper is to study convergence and error estimates of the Monte Carlo method for the Navier-Stokes equations with random data. To discretize in space and time, the Monte Carlo method is combined with a suitable deterministic discretization scheme, such as a finite volume method. We assume that the initial data, force and the viscosity coefficients are random variables and study both, the statistical convergence rates as well as the approximation errors. Since the compressible Navier-Stokes equations are not known to be uniquely solvable in the class of global weak solutions, we cannot apply pathwise arguments to analyze the random Navier-Stokes equations. Instead we have to apply intrinsic stochastic compactness arguments via the Skorokhod representation theorem and the Gy\"{o}ngy-Krylov method. Assuming that the numerical solutions are bounded in probability, we prove that the Monte Carlo finite volume method converges to a statistical strong solution. The convergence rates are discussed as well. Numerical experiments illustrate theoretical results.
翻译:本文的目的是用随机数据研究Monte Carlo 方法对纳维- 斯托克斯方程式的趋同和误差估计。 为了在空间和时间上分解, Monte Carlo 方法与适当的确定分解方案相结合, 例如有限体积法。 我们假设初始数据、 力和粘度系数是随机变量, 并且研究统计趋同率和近似差。 由于人们不知道压缩的纳维- 斯托克斯方程式在全球薄弱方程式的类别中是独特的可溶解的, 我们无法应用路由性参数来分析随机的纳维- 斯托克斯方程式。 相反, 我们不得不通过 Skorokhod 表示理论和 Gy\" {o} ngy- Krylov 法应用内在的随机性缩缩凑紧性参数。 假设数字解决办法在概率上是相互约束的, 我们证明蒙特卡洛 定量法的量法在统计上是集中的。 也讨论了这些趋同率。 数字实验实验可以说明理论结果 。