Numerical analysis for the stochastic Stokes/Navier-Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the existing error estimates of finite element methods for the stochastic equations all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The purpose of this article is to establish the strong convergence of $O(\tau^{1/2}+ h^2)$ and $O(\tau^{1/2}+ h)$ in the $L^2$ norm for the inf-sup stable velocity-pressure finite element approximations, where $\tau$ and $h$ denote the temporal stepsize and spatial mesh size, respectively. The error estimates are of optimal order for the spatial discretization considered in this article (with MINI element), and consistent with the numerical experiments. The analysis is based on the fully discrete Stokes semigroup techniques and the corresponding new estimates.
翻译:尽管对相应的确定性方程做了很好的工作,但是对Stochacist Stokes/Navier-Stokes方程的数值分析仍然具有挑战性,特别是,目前对Stochacistic方程的有限元素方法的误差估计都因空间分解的顺序减少而受到影响。对于这些完全离散的方程式,最佳的趋同结果只是时间和空间第一顺序的半序,从传统意义上讲,这在空间上不是最佳的。本条款的目的是确定美元(Tau ⁇ 1/2 ⁇ 2 ⁇ h ⁇ 2)美元和美元(Tau ⁇ 1/2 ⁇ 2 ⁇ h)美元($)的强烈趋同,对于Inf-sup稳定的速压定式元素近似值,分别是$\tau美元和$hh美元表示时间级和空间中位大小。错误估计是本条款中考虑的空间离散化的最佳顺序(与MINI元素),并与数字实验一致。分析以完全离散的半成型技术和新对应的估算为基础。