项目名称: 稀土有机-无机杂化近红外量子剪裁纳米材料的制备与性能研究

项目编号: No.11304021

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 李素文

作者单位: 长春工程学院

项目金额: 30万元

中文摘要: 稀土离子掺杂的近红外量子剪裁材料由于其在太阳能电池领域的潜在应用而成为近年来的研究热点。然而,掺杂在无机基质中的稀土离子摩尔吸光系数小、吸收截面低,导致光激发无效和发光强度低。而纯的稀土有机配合物的光、热和化学稳定性差,不易加工。稀土有机-无机杂化材料兼具有机和无机功能基团各自的性质。本项目拟采用不同的设计思路和合成方法制备具有近红外量子剪裁性质的稀土有机-无机杂化纳米材料,深入研究其发光性质、发光动力学,研究合成方法、有机配体种类、基质材料结构、掺杂稀土离子对儿及其相对掺杂浓度对材料光转换效果的影响。筛选出性能优异、高效的光转换稀土有机-无机杂化纳米材料,将其与折射率匹配的聚合物单体或溶液相结合,在一定条件下制备光透过率高、光色散小、光学性能优异的复合材料。此复合材料用作硅太阳能电池的光转换层,有望实现硅太阳能电池对太阳光的全谱吸收,减少硅太阳能电池因光谱失配造成的能量损失,提高硅太阳能电池的光电转换效率。

中文关键词: 有机-无机杂化;纳米材料;光转换;硅太阳能电池;效率

英文摘要: The near infrared quantum cutting materials doped with rare earth ions have become the focuses of intensive research because of their promising applications in solar cells. The principal disadvantage of RE ions doped in inorganic matrixes is the low molar absorptivity associated with 4f → 4f transitions and narrow absorption band, which leads to inefficient optical excitation and low luminescence intensity. And the pure rare earth organic complexes possess disadvantages,such as poor optical,thermal and chemical stabilities and low mechanical strength. RE organic- inorganic hybrid luminescent materials combine the respective characteristics of organic and inorganic parts. RE organic - inorganic hybrid materials have not only improved the optical and thermal stabilities, but also increased photoluminescent intensity. Herein, in the work, we prepare the RE organic - inorganic hybrid nanomaterials by different designed ideas and synthesis methods, and systematically study their properties. The obtained optimum light conversion materials of RE organic -inorganic hybrid are dispersed in polymer. The composites that have high optical transmissivity and small optical dispersion and excellent optical function are prepared by bulk polymerization or spin method. As a downconversion luminescent convertor, the kind of compos

英文关键词: organic-inorganic hybrid;nanomaterials;optical conversion;Si-solar cells;efficience

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
28+阅读 · 2021年10月1日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员