Methane is a powerful greenhouse gas, and a primary target for mitigating climate change in the short-term future due to its relatively short atmospheric lifetime and greater ability to trap heat in Earth's atmosphere compared to carbon dioxide. Top-down observations of atmospheric methane are possible via drone and aircraft surveys as well as satellites such as the TROPOspheric Monitoring Instrument (TROPOMI). Recent work has begun to apply the divergence method to produce regional methane emission rate estimates. Here we show that spatially incomplete observations of methane can produce negatively biased time-averaged regional emission rate estimates via the divergence method, but that this effect can be counteracted by adopting a procedure in which daily advective fluxes of methane are time-averaged before the divergence method is applied. Using such a procedure with TROPOMI methane observations, we calculate yearly Permian emission rates of 3.1, 2.4 and 2.7 million tonnes per year for the years 2019 through 2021. We also show that highly-resolved plumes of methane can have negatively biased estimated emission rates by the divergence method due to the presence of turbulent diffusion in the plume, but this is unlikely to affect regional methane emission budgets constructed from TROPOMI observations of methane. The results from this work are expected to provide useful guidance for future implementations of the divergence method for emission rate estimation from satellite data - be it for methane or other gaseous species in the atmosphere.


翻译:甲烷是一种强效的温室气体,由于其相对较短的大气寿命和相对于二氧化碳较大的吸热能力,它是短期内减缓气候变化的主要目标。通过无人机和飞机勘测以及像TROPOspheric Monitoring Instrument(TROPOMI)一样的卫星,可以进行大气甲烷的自上而下观测。最近的研究开始应用散度法来产生区域甲烷排放速率的估计。在这里,我们表明,由于空间上的不完整观测而通过散度法产生的区域排放速率估计可能会产生负偏差,但是这种效应可以通过采用在应用散度法之前对甲烷的日通量进行时间平均的方法来抵消。使用这种TROPOMI甲烷观测的方法,我们计算出2019年到2021年间的Permian年排放速率分别为3.1、2.4和2.7百万吨。我们还表明,由于在烟雾中存在湍流扩散现象,高分辨率的甲烷云可能会在散度法估计的排放速率方面产生负偏差,但这不太可能影响由TROPOMI观测到的甲烷构建的区域甲烷排放预算。本工作的结果预计将为将来从卫星数据估计排放速率的散度法的实现提供有用的指导 - 无论是针对甲烷还是大气中的其他气体物种。

0
下载
关闭预览

相关内容

大模型的涌现能力介绍
专知会员服务
170+阅读 · 2023年5月16日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员