Domain generalization is challenging due to the domain shift and the uncertainty caused by the inaccessibility of target domain data. In this paper, we address both challenges with a probabilistic framework based on variational Bayesian inference, by incorporating uncertainty into neural network weights. We couple domain invariance in a probabilistic formula with the variational Bayesian inference. This enables us to explore domain-invariant learning in a principled way. Specifically, we derive domain-invariant representations and classifiers, which are jointly established in a two-layer Bayesian neural network. We empirically demonstrate the effectiveness of our proposal on four widely used cross-domain visual recognition benchmarks. Ablation studies validate the synergistic benefits of our Bayesian treatment when jointly learning domain-invariant representations and classifiers for domain generalization. Further, our method consistently delivers state-of-the-art mean accuracy on all benchmarks.


翻译:由于域变和无法获取目标域数据造成的不确定性,广域化具有挑战性。在本文中,我们通过将不确定性纳入神经网络重量,以基于不同贝耶斯语推论的概率框架来应对这两项挑战。我们将不确定性纳入神经网络加权数。我们用一种概率公式将域变异与贝耶斯语推论相提并论。这使我们能够以有原则的方式探索域变异学习。具体地说,我们从一个双层贝耶斯神经网络中共同建立的域变异表达和分类器中得出。我们从经验上展示了我们关于四种广泛使用的跨域视觉识别基准的建议的有效性。减法研究验证了我们巴伊斯语治疗在共同学习域变异表达和域一般化分类时的协同效益。此外,我们的方法始终一贯地提供所有基准的“最新”中值精度。

0
下载
关闭预览

相关内容

贝叶斯推断(BAYESIAN INFERENCE)是一种应用于不确定性条件下的决策的统计方法。贝叶斯推断的显著特征是,为了得到一个统计结论能够利用先验信息和样本信息。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
4+阅读 · 2018年11月26日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关论文
Top
微信扫码咨询专知VIP会员