We study statistical and computational limits of clustering when the means of the centres are sparse and their dimension is possibly much larger than the sample size. Our theoretical analysis focuses on the model $X_i = z_i \theta + \varepsilon_i, ~z_i \in \{-1,1\}, ~\varepsilon_i \thicksim \mathcal{N}(0,I)$, which has two clusters with centres $\theta$ and $-\theta$. We provide a finite sample analysis of a new sparse clustering algorithm based on sparse PCA and show that it achieves the minimax optimal misclustering rate in the regime $\|\theta\| \rightarrow \infty$. Our results require the sparsity to grow slower than the square root of the sample size. Using a recent framework for computational lower bounds -- the low-degree likelihood ratio -- we give evidence that this condition is necessary for any polynomial-time clustering algorithm to succeed below the BBP threshold. This complements existing evidence based on reductions and statistical query lower bounds. Compared to these existing results, we cover a wider set of parameter regimes and give a more precise understanding of the runtime required and the misclustering error achievable. Our results imply that a large class of tests based on low-degree polynomials fail to solve even the weak testing task.


翻译:当中心手段稀少,其规模可能比抽样规模大得多时,我们研究集群的统计和计算限制。我们的理论分析侧重于模型 $X_i = z_i = z_i\theta + varepsilon_i, ~ z_ i\ in ⁇ -1, 1 ⁇, ⁇ varepsilon_ i\ ticksim\ mathscal{N}(0,I)$),它有两个集群,中心为美元和美元。我们对基于稀有五氯苯甲醚的新的稀散集群算法进行了有限的抽样分析,并显示它实现了制度内最小最大最佳组合率 ${theta\\\\ rightrow\ inty_i, ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 以 以 方向的低 的 的 的 的 方向测试。

0
下载
关闭预览

相关内容

【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
使用 Redis 解决“树”形数据的复杂查询
数据库开发
5+阅读 · 2017年9月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月14日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
3+阅读 · 2020年2月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
使用 Redis 解决“树”形数据的复杂查询
数据库开发
5+阅读 · 2017年9月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
0+阅读 · 2021年5月14日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
3+阅读 · 2020年2月5日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Top
微信扫码咨询专知VIP会员