Multi-agent path finding (MAPF) is an indispensable component of large-scale robot deployments in numerous domains ranging from airport management to warehouse automation. In particular, this work addresses lifelong MAPF (LMAPF) - an online variant of the problem where agents are immediately assigned a new goal upon reaching their current one - in dense and highly structured environments, typical of real-world warehouse operations. Effectively solving LMAPF in such environments requires expensive coordination between agents as well as frequent replanning abilities, a daunting task for existing coupled and decoupled approaches alike. With the purpose of achieving considerable agent coordination without any compromise on reactivity and scalability, we introduce PRIMAL2, a distributed reinforcement learning framework for LMAPF where agents learn fully decentralized policies to reactively plan paths online in a partially observable world. We extend our previous work, which was effective in low-density sparsely occupied worlds, to highly structured and constrained worlds by identifying behaviors and conventions which improve implicit agent coordination, and enable their learning through the construction of a novel local agent observation and various training aids. We present extensive results of PRIMAL2 in both MAPF and LMAPF environments and compare its performance to state-of-the-art planners in terms of makespan and throughput. We show that PRIMAL2 significantly surpasses our previous work and performs comparably to these baselines, while allowing real-time re-planning and scaling up to 2048 agents.


翻译:在机场管理和仓储自动化等诸多领域,大规模机器人部署的大型机器人发现多剂路径(MAPF)是一个不可或缺的组成部分,特别是,这项工作涉及终生MAPF(LMAPF) -- -- 问题的一个在线变体,即代理人在达到当前目标后立即被分配到一个新的目标 -- -- 在密集和高度结构化的环境中,这是真实世界仓储业务的典型特点。在这种环境中有效解决LMAPF,需要代理人之间进行昂贵的协调以及频繁的再规划能力,这是现有的相互配合和分解办法的一项艰巨任务。为了在不妥协回旋性和可伸缩性的情况下实现大量的代理人协调,我们为LIMAL2推出了一个分布式强化学习框架,使代理人学习完全分散的政策,以便在部分可观察的世界中被动地规划在线路径。我们把以前的工作,即低密度、分散的世界所占据的世界有效,扩大到高度结构化和受限的世界,通过构建新的地方代理人观察和各种训练辅助工具来学习它们。我们在MAPF和IMAP2的实际规划过程中,在实际规划阶段将PIMAL2取得广泛的成果,同时将以前的业绩与以往的进度对比。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员