Machine learning algorithms play an important role in a variety of important decision-making processes, including targeted advertisement displays, home loan approvals, and criminal behavior predictions. Given the far-reaching impact of these algorithms, it is crucial that they operate fairly, free from bias or prejudice towards certain groups in the population. Ensuring impartiality in these algorithms is essential for promoting equality and avoiding discrimination. To this end we introduce a unified framework for randomized subset selection that incorporates group fairness constraints. Our problem involves a global utility function and a set of group utility functions for each group, here a group refers to a group of individuals (e.g., people) sharing the same attributes (e.g., gender). Our aim is to generate a distribution across feasible subsets, specifying the selection probability of each feasible set, to maximize the global utility function while meeting a predetermined quota for each group utility function in expectation. Note that there may not necessarily be any direct connections between the global utility function and each group utility function. We demonstrate that this framework unifies and generalizes many significant applications in machine learning and operations research. Our algorithmic results either improves the best known result or provide the first approximation algorithms for new applications.
翻译:机器学习算法在包括定向广告展示、房屋贷款批准和犯罪行为预测等各种重要决策过程中都扮演着重要角色。鉴于这些算法的广泛影响,确保它们公平运行,不偏袒或偏见某些族群,至关重要。确保这些算法的公正性对于促进平等和避免歧视至关重要。为此,我们引入了一种统一的随机子集选择框架,该框架包括组公平性约束。我们的问题涉及全局效用函数和每个组的一组效用函数。这里的组指具有相同属性(例如性别)的个体(例如人)的一组。我们的目标是生成跨可行子集的分布,指定每个可行集合的选择概率,以最大化全局效用函数,同时满足预期每个组效用函数的预定配额。请注意,全局效用函数和每个组效用函数之间可能没有任何直接关联。我们证明了这个框架统一和概括了机器学习和运筹学中许多重要应用。我们的算法结果改进了已知的最佳结果或为新应用提供了第一近似算法。