More and more researchers focus on studying company risk prediction based on earnings conference calls because of their free form and rich information. However, existing research does not take speaker role information into account. Besides, current research does not fully consider the impact of inter-company relationships on company risk. The only study integrating company networks and earnings conference calls constructs companies in an undirected graph, which does not meet the requirement of no temporal information leakage for prediction tasks. To solve the above problems, we propose a new model -- Temporal Virtual Graph Neural Network (TVGNN), to incorporate earnings conference calls and company networks for company risk prediction. Our model incorporates the speaker's role information in the dialogue modeling for the first time. In addition, we design a new method to construct company networks that can ensure no temporal information leakage in the graph. The experimental results show that the proposed model exceeds all baselines. The case study shows that the prediction results of the model are interpretable.
翻译:越来越多的研究人员侧重于研究公司风险预测,其依据是盈利会议电话的免费形式和丰富的信息。然而,现有的研究没有考虑到演讲人的角色信息。此外,目前的研究没有充分考虑到公司间关系对公司风险的影响。唯一的一项研究是将公司网络和盈利会议电话合并成一个非方向的图表,这不符合不为预测任务提供时间信息泄漏的要求。为了解决上述问题,我们提议了一个新的模型 -- -- 时空虚拟图神经网络(TVGNN),将盈利会议电话和公司网络纳入公司风险预测。我们的模型首次将演讲人的角色信息纳入对话模型中。此外,我们设计了一种新的方法来构建公司网络,以确保不会在图表中出现时间信息泄漏。实验结果表明,拟议的模型超过了所有基线。案例研究表明,模型的预测结果是可以解释的。