Inverse problem for the identification of the parameters for large-scale systems of nonlinear ordinary differential equations (ODEs) arising in systems biology is analyzed. In a recent paper in \textit{Mathematical Biosciences, 305(2018), 133-145}, the authors implemented the numerical method suggested by one of the authors in \textit{J. Optim. Theory Appl., 85, 3(1995), 509-526} for identification of parameters in moderate scale models of systems biology. This method combines Pontryagin optimization or Bellman's quasilinearization with sensitivity analysis and Tikhonov regularization. We suggest modification of the method by embedding a method of staggered corrector for sensitivity analysis and by enhancing multi-objective optimization which enables application of the method to large-scale models with practically non-identifiable parameters based on multiple data sets, possibly with partial and noisy measurements. We apply the modified method to a benchmark model of a three-step pathway modeled by 8 nonlinear ODEs with 36 unknown parameters and two control input parameters. The numerical results demonstrate geometric convergence with a minimum of five data sets and with minimum measurements per data set. Software package \textit{qlopt} is developed and posted in GitHub. MATLAB package AMIGO2 is used to demonstrate advantage of \textit{qlopt} over most popular methods/software such as \textit{lsqnonlin}, \textit{fmincon} and \textit{nl2sol}.
翻译:用于确定系统生物学中产生的非线性普通差异方程式(ODEs) 大规模系统参数的逆向问题 。 在\ textit{ 数学生物科学, 305(2018), 133-145} 最近的一份论文中, 作者们应用了作者之一在\ textit{J. Optim. Theory Appl., 85, 3(1995), 509-526} 中系统生物学模型中确定参数的数值方法 。 这种方法将 Pontryagin优化或Bellman的准线性化与敏感度分析和Tikhonov 正规化相结合。 我们建议修改方法, 嵌入一个断层校准校准校准的校正器方法, 并增强多目标优化, 使该方法适用于基于多种数据集、 可能部分测量和噪音测量的大型模型。 我们将修改方法应用于由8个非线性ODOD} 优化或Bellman的准线性线性参数和两个控制输入参数。我们建议修改方法, 将最差的校准的校准的校准的校正 和AMA2 模型用于最低的五制的AS的模型的模型和M的缩制。