Probabilistic circuits (PCs) are a class of tractable probabilistic models, which admit efficient inference routines depending on their structural properties. In this paper, we introduce md-vtrees, a novel structural formulation of (marginal) determinism in structured decomposable PCs, which generalizes previously proposed classes such as probabilistic sentential decision diagrams. Crucially, we show how mdvtrees can be used to derive tractability conditions and efficient algorithms for advanced inference queries expressed as arbitrary compositions of basic probabilistic operations, such as marginalization, multiplication and reciprocals, in a sound and generalizable manner. In particular, we derive the first polytime algorithms for causal inference queries such as backdoor adjustment on PCs. As a practical instantiation of the framework, we propose MDNets, a novel PC architecture using md-vtrees, and empirically demonstrate their application to causal inference.
翻译:概率电路是一类可处理的概率模型,根据它们的结构特性具有有效的推断程序。在本文中,我们引入md-vtree,这是一种结构化分解PC(边际)决定性的新形式,它推广了先前提出的类别,如概率表决图。关键是,我们展示了如何使用md-vtree以合理和可推广的方式派生可组合的基本概率运算(如边缘化、乘法和倒数)的任意组合所表示的高级推断查询的可处理条件和有效算法。特别地,我们为此推导了第一个有多项式时间复杂度的概率电路上的因果推断查询算法,如backdoor调整算法。作为该框架的一个实用实例,我们提出了MDNets,这是一种使用md-vtree的新型PC体系结构,并在实证上证明了它们在因果推断中的应用。