Intelligent agents must be able to think fast and slow to perform elaborate manipulation tasks. Reinforcement Learning (RL) has led to many promising results on a range of challenging decision-making tasks. However, in real-world robotics, these methods still struggle, as they require large amounts of expensive interactions and have slow feedback loops. On the other hand, fast human-like adaptive control methods can optimize complex robotic interactions, yet fail to integrate multimodal feedback needed for unstructured tasks. In this work, we propose to factor the learning problem in a hierarchical learning and adaption architecture to get the best of both worlds. The framework consists of two components, a slow reinforcement learning policy optimizing the task strategy given multimodal observations, and a fast, real-time adaptive control policy continuously optimizing the motion, stability, and effort of the manipulator. We combine these components through a bio-inspired action space that we call AFORCE. We demonstrate the new action space on a contact-rich manipulation task on real hardware and evaluate its performance on three simulated manipulation tasks. Our experiments show that AFORCE drastically improves sample efficiency while reducing energy consumption and improving safety.


翻译:智能剂必须能够快速和缓慢地思考复杂的操作任务。强化学习(RL)在一系列具有挑战性的决策任务中带来了许多有希望的结果。然而,在现实世界的机器人中,这些方法仍在挣扎,因为它们需要大量昂贵的互动和缓慢的反馈回路。另一方面,快速的人型适应性控制方法可以优化复杂的机器人互动,但不能将非结构化任务所需的多式联运反馈结合起来。在这项工作中,我们提议将学习问题纳入一个等级化学习和适应结构,以获得两个世界的最佳成果。这个框架由两个部分组成:一个缓慢的强化学习政策,在多式观察下优化任务战略,以及一个快速、实时的适应性控制政策,不断优化操纵者的运动、稳定和努力。我们通过一个生物激励行动空间将这些组成部分结合起来,我们称之为AFORCE。我们展示了在实际硬件上接触丰富的操纵任务上的新行动空间,并评价其三项模拟操纵任务的业绩。我们的实验显示,AFORCE在减少能源消耗并改进安全的同时,大幅提高了抽样效率。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员