We present $\textbf{MolT5}$ $-$ a self-supervised learning framework for pretraining models on a vast amount of unlabeled natural language text and molecule strings. $\textbf{MolT5}$ allows for new, useful, and challenging analogs of traditional vision-language tasks, such as molecule captioning and text-based de novo molecule generation (altogether: translation between molecules and language), which we explore for the first time. Since $\textbf{MolT5}$ pretrains models on single-modal data, it helps overcome the chemistry domain shortcoming of data scarcity. Furthermore, we consider several metrics, including a new cross-modal embedding-based metric, to evaluate the tasks of molecule captioning and text-based molecule generation. Our results show that $\textbf{MolT5}$-based models are able to generate outputs, both molecules and captions, which in many cases are high quality.
翻译:$\ textbf{MolT5} 我们首次探索了 $\ textbf{MolT5} $- $- 美元 用于 大量的无标签自然语言文本和分子字符的预培训模型的自监督学习框架 。$\ textbf{MolT5} 美元 允许使用新的、有用和具有挑战性的传统视觉语言任务类比, 如分子字幕和基于文本的脱新分子生成( 包括分子和语言之间的翻译) 。 由于 $\ textbf{MolT5} 美元 的单调数据前列模型, 它帮助克服了数据稀缺的化学领域缺陷。 此外, 我们考虑了一些衡量尺度, 包括新的跨模式嵌入式嵌入式模型, 来评估分子字幕和基于文本的分子生成任务。 我们的结果表明, $\ textbf{MolT5} $ 基模型能够产生出很多情况下质量都很高的分子和字幕产出。