A mixed graph $G$ is a graph that consists of both undirected and directed edges. An orientation of $G$ is formed by orienting all the undirected edges of $G$, i.e., converting each undirected edge $\{u,v\}$ into a directed edge that is either $(u,v)$ or $(v,u)$. The problem of finding an orientation of a mixed graph that makes it strongly connected is well understood and can be solved in linear time. Here we introduce the following orientation problem in mixed graphs. Given a mixed graph $G$, we wish to compute its maximal sets of vertices $C_1,C_2,\ldots,C_k$ with the property that by removing any edge $e$ from $G$ (directed or undirected), there is an orientation $R_i$ of $G\setminus{e}$ such that all vertices in $C_i$ are strongly connected in $R_i$. We discuss properties of those sets, and we show how to solve this problem in linear time by reducing it to the computation of the $2$-edge twinless strongly connected components of a directed graph. A directed graph $G=(V,E)$ is twinless strongly connected if it contains a strongly connected spanning subgraph without any pair of antiparallel (or twin) edges. The twinless strongly connected components (TSCCs) of a directed graph $G$ are its maximal twinless strongly connected subgraphs. A $2$-edge twinless strongly connected component (2eTSCC) of $G$ is a maximal subset of vertices $C$ such that any two vertices $u, v \in C$ are in the same twinless strongly connected component of $G \setminus e$, for any edge $e$. These concepts have several diverse applications, such as the design of road and telecommunication networks, and the structural stability of buildings.


翻译:混合图形 $G$ 是一个由非方向和定向电路边缘组成的图表。 混合图形 $G$ 方向由所有未方向的G$边组成, 即将每个未方向的G$+uu, v ⁇ $美元转换成一个方向边缘, 即 $( u, v) 美元或 $( v, u) 美元。 找到一个能使其紧密连接的混合图形方向的问题非常清楚, 可以在线性时间中解决。 我们在这里在混合图表中引入以下方向问题。 混合图形 $G$, 我们希望将所有未方向的G美元边端调整成所有未方向的G$, 也就是说, 将每个未方向的G$( o, v) 或 $( v, 美元 美元) 双面平面平面的双面平面平面平面平面图( 美元) 以强烈的平面平面平面平面平面平面平面平面平面平面平面的平面平面平面平面平面平面平面平面平面平面平。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员