项目名称: 深共熔溶剂介质中镍磷合金的可控制备及电化学性能研究

项目编号: No.51271169

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 谷长栋

作者单位: 浙江大学

项目金额: 80万元

中文摘要: Ni-P合金在金属材料表面改性、电催化和化学电源等领域应用广泛。针对目前Ni-P合金合成方法的匮乏和传统制备过程中存在的安全隐患,本课题提出在环境友好型离子液体介质中进行Ni-P合金的可控制备、微观结构、电化学性能及反应介质的作用机制等关键问题研究。前期研究发现廉价易得的类离子液体-深共熔溶剂介质中可以实现纳米结构金属的可控制备,据此提出在上述合成纳米结构Ni的反应介质中加入磷源,拟采用离子热工艺和电沉积手段进行Ni-P合金的可控制备,探索深共熔溶剂介质中合成纳米晶或非晶态Ni-P合金的技术途径及介质的作用机制,阐明Ni-P合金在深共熔溶剂中的结构演变和生长规律。针对Ni-P合金在锂离子电池负极材料和电催化领域的潜在应用,分析本课题制备的Ni-P合金的电化学性能,明确合金的化学成分、物相、微观结构与电化学性能的关联特性,为高性能过渡金属磷化物的设计与绿色制备技术提供新的理论和实验依据。

中文关键词: 类离子液体;纳米结构;涂层与表面;电化学性能;电催化

英文摘要: Ni-P alloys have wide applications in the surface modification of metals, electrocatalysis, and chemical power. As there is the lack of synthetic strategy of Ni-P alloys and the harmfulness in the conventional synthetic routes, we propose to investigate the controllable synthesis of Ni-P alloys from the environmental-friendly ionic liquids. Moreover, the microstructure, electrochemical property, and the effect mechanism of the solvents also would be explored in this project. Our previous study indicates that nanostructured metals can be facilely fabricated from the cheap and obtainable ionic liquid analogous-deep eutectic solvent. Therefore, with the addictive of P sources into the above solvent for fabricating metals, ionothermal methods and electrodeposition will be carried out to controllably fabricating of Ni-P alloys. The microstructure evolution and growth characteristic of the Ni-P products from the solvent will be explored. Based on the potential applications in the lithium ion batteries and electrocatalysis, the electrochemical properties of the novel Ni-P alloys will be investigated. The correlations on the chemical composition, crystal structure, microstructure, and electrochemical property will be elucidated, which would provide new theory and experimental evidence for the design of transition metal

英文关键词: Ionic liquid analogous;Nanostructure;Coatings and surfaces;Electrochemical properties;Electrocatalysis

成为VIP会员查看完整内容
0

相关内容

2021工业区块链案例集,68页pdf
专知会员服务
85+阅读 · 2021年12月1日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
46+阅读 · 2021年8月12日
专知会员服务
31+阅读 · 2021年5月7日
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
59+阅读 · 2021年5月3日
专知会员服务
182+阅读 · 2020年11月23日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
24+阅读 · 2021年6月25日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关VIP内容
2021工业区块链案例集,68页pdf
专知会员服务
85+阅读 · 2021年12月1日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
46+阅读 · 2021年8月12日
专知会员服务
31+阅读 · 2021年5月7日
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
59+阅读 · 2021年5月3日
专知会员服务
182+阅读 · 2020年11月23日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员