Domain adaptive text classification is a challenging problem for the large-scale pretrained language models because they often require expensive additional labeled data to adapt to new domains. Existing works usually fails to leverage the implicit relationships among words across domains. In this paper, we propose a novel method, called Domain Adaptation with Structured Knowledge (DASK), to enhance domain adaptation by exploiting word-level semantic relationships. DASK first builds a knowledge graph to capture the relationship between pivot terms (domain-independent words) and non-pivot terms in the target domain. Then during training, DASK injects pivot-related knowledge graph information into source domain texts. For the downstream task, these knowledge-injected texts are fed into a BERT variant capable of processing knowledge-injected textual data. Thanks to the knowledge injection, our model learns domain-invariant features for non-pivots according to their relationships with pivots. DASK ensures the pivots to have domain-invariant behaviors by dynamically inferring via the polarity scores of candidate pivots during training with pseudo-labels. We validate DASK on a wide range of cross-domain sentiment classification tasks and observe up to 2.9% absolute performance improvement over baselines for 20 different domain pairs. Code will be made available at https://github.com/hikaru-nara/DASK.
翻译:对大规模预先培训的语言模型来说,适应性文字分类是一个具有挑战性的问题,因为它们往往需要昂贵的额外标签数据来适应新的域。 现有工作通常无法利用跨域的文字之间的隐含关系。 在本文中,我们提出了一个创新方法,称为“结构知识的域适应 ” (DASK), 以便通过利用文字级别的语义关系加强域适应性。 DASK 首先建立一个知识图表, 以记录目标域中枢纽术语( 域独立单词) 和非文字之间的关系。 然后在培训中, DASK 输入的与知识图形相关的知识图形信息通常无法在源域文本中发挥作用。 在下游任务中, 这些知识输入的文本被输入到能够处理知识输入文本数据的BERT变量中。 借助知识注入, 我们的模型根据它们与维特词( 域域域域) 的关系来学习域内变量特性。 DASK 保证通过动态推导到源域域域域域文本的极值分级Slimal- sal- lavealalalalalal laveal 校验, 20 a del- climal- crealalal laviewdal salal laviewtraviews 20 dal labalalal labal- sal labal laveal 期间, lad- sal- sal- sil- sal laview