A sequence of works in unconstrained online convex optimisation have investigated the possibility of adapting simultaneously to the norm $U$ of the comparator and the maximum norm $G$ of the gradients. In full generality, matching upper and lower bounds are known which show that this comes at the unavoidable cost of an additive $G U^3$, which is not needed when either $G$ or $U$ is known in advance. Surprisingly, recent results by Kempka et al. (2019) show that no such price for adaptivity is needed in the specific case of $1$-Lipschitz losses like the hinge loss. We follow up on this observation by showing that there is in fact never a price to pay for adaptivity if we specialise to any of the other common supervised online learning losses: our results cover log loss, (linear and non-parametric) logistic regression, square loss prediction, and (linear and non-parametric) least-squares regression. We also fill in several gaps in the literature by providing matching lower bounds with an explicit dependence on $U$. In all cases we obtain scale-free algorithms, which are suitably invariant under rescaling of the data. Our general goal is to establish achievable rates without concern for computational efficiency, but for linear logistic regression we also provide an adaptive method that is as efficient as the recent non-adaptive algorithm by Agarwal et al. (2021).


翻译:令人惊讶的是,Kempka等人(2019年)最近的结果表明,在参照国的美元和梯度的最大标准美元同时适应标准值最高值值为美元的情况下,不需要为适应性而同时支付这种价格。我们跟踪了这一观察,我们发现,如果我们专门处理其他共同监督的在线学习损失,事实上绝不会为适应性付出任何代价:我们的结果包括逻辑损失、(线性和非线性)物流倒退、平方损失预测和(线性和非线性)最低回归。我们还填补了文献中的若干空白,将较低的界限与对U美元的明确依赖相匹配。 在所有这些情况下,我们通过不考虑任何共同监督的在线学习损失,我们不会为适应性付出任何代价。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月20日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2020年12月17日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关VIP内容
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员