We introduce a Bayesian perspective for the structured matrix factorization problem. The proposed framework provides a probabilistic interpretation for existing geometric methods based on determinant minimization. We model input data vectors as linear transformations of latent vectors drawn from a distribution uniform over a particular domain reflecting structural assumptions, such as the probability simplex in Nonnegative Matrix Factorization and polytopes in Polytopic Matrix Factorization. We represent the rows of the linear transformation matrix as vectors generated independently from a normal distribution whose covariance matrix is inverse Wishart distributed. We show that the corresponding maximum a posteriori estimation problem boils down to the robust determinant minimization approach for structured matrix factorization, providing insights about parameter selections and potential algorithmic extensions.
翻译:我们对结构化矩阵因子化问题采用了贝叶西亚视角。拟议框架对基于最小化的决定因素的现有几何方法提供了一种概率解释。我们将输入数据矢量作为潜在矢量的线性变换模型,这种变换来自特定领域的分布统一,反映结构假设,如非负矩阵因子化中的概率简单x和多位体矩阵因子化中的多面体。我们代表线性变形矩阵的行,作为独立于正常分布的、其常态矩阵分布为反Wishart分布的矢量。我们显示,相应的事后估计问题最大值将归结为结构化矩阵因子化的稳健的决定因素最小化方法,对参数选择和潜在算法扩展提供洞察力。