The automatic discovery of functional dependencies(FDs) has been widely studied as one of the hardest problems in data profiling. Existing approaches have focused on making the FD computation efficient while inspecting single relations at a time. In this paper, for the first time we address the problem of inferring FDs for multiple relations as they occur in integrated views by solely using the functional dependencies of the base relations of the view itself. To this purpose, we leverage logical inference and selective mining and show that we can discover most of the exact FDs from the base relations and avoid the full computation of the FDs for the integrated view itself, while at the same time preserving the lineage of FDs of base relations. We propose algorithms to speedup the inferred FD discovery process and mine FDs on-the-fly only from necessary data partitions. We present InFine(INferred FunctIoNal dEpendency), an end-to-end solution to discover inferred FDs on integrated views by leveraging provenance information of base relations. Our experiments on a range of real-world and synthetic datasets demonstrate the benefits of our method over existing FD discovery methods that need to rerun the discovery process on the view from scratch and cannot exploit lineage information on the FDs. We show that InFine outperforms traditional methods necessitating the full integrated view computation by one to two order of magnitude in terms of runtime. It is also the most memory efficient method while preserving FD provenance information using mainly inference from base table with negligible execution time.


翻译:自动发现功能依赖性(FDs)是数据剖析方面最困难的问题之一,已广泛研究自动发现功能依赖性(FDs)是数据剖析方面最困难的问题之一,现有方法的重点是使FD在一次检查单一关系时提高计算效率;在本文件中,我们首次在综合观点中通过仅使用该观点基础关系本身的功能依赖性(FDs)来应对多重关系在综合观点中产生推断FDs的问题;为此,我们利用逻辑推论和选择性开采,表明我们能够从基础关系中发现大部分确切的FDs,避免为综合观点本身而充分计算FDs,同时保持基础关系中最小的FDs关系。我们建议采用算法加速推断的FD发现过程和只从必要的数据分割在空中进行。我们介绍Infine(Infered FunctIoNal dependation),一个端到端到端端,通过利用源关系中的源码信息,我们从现实和合成数据剖析两个时间范围进行的实验,同时也利用现有方法显示我们从现有理解方法的正确理解方法的好处。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
【Google-BryanLim等】可解释深度学习时序预测
专知会员服务
60+阅读 · 2021年12月19日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
7+阅读 · 2021年10月12日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员