We study valuing the data of a data owner/seller for a data seeker/buyer. Data valuation is often carried out for a specific task assuming a particular utility metric, such as test accuracy on a validation set, that may not exist in practice. In this work, we focus on task-agnostic data valuation without any validation requirements. The data buyer has access to a limited amount of data (which could be publicly available) and seeks more data samples from a data seller. We formulate the problem as estimating the differences in the statistical properties of the data at the seller with respect to the baseline data available at the buyer. We capture these statistical differences through second moment by measuring diversity and relevance of the seller's data for the buyer; we estimate these measures through queries to the seller without requesting raw data. We design the queries with the proposed approach so that the seller is blind to the buyer's raw data and has no knowledge to fabricate responses to queries to obtain a desired outcome of the diversity and relevance trade-off.We will show through extensive experiments on real tabular and image datasets that the proposed estimates capture the diversity and relevance of the seller's data for the buyer.


翻译:我们研究数据所有人/卖方的数据,以寻找数据者/买方为数据查询者/买方; 数据评估往往是为一项特定任务而进行,其中假定一种特定有用指标,例如验证数据集的测试准确性,而实际上可能并不存在; 在这项工作中,我们侧重于任务机密性数据评估,而没有任何验证要求; 数据买方可以获得数量有限的数据(可以公开提供),并从数据卖方寻求更多的数据样本; 我们将问题表述为估计卖方数据在买方现有基线数据方面的统计性质差异; 我们通过衡量卖方数据的多样性和相关性,在第二时刻捕捉到这些统计差异; 我们通过询问卖方,而不要求提供原始数据,来估计这些措施; 我们设计询问方法,使卖方对买方原始数据视而不见,并且不知道对询问作出何种答复,以获得多样性和相关性交易的预期结果。 我们将通过对真实表格和图像数据集进行广泛的试验,表明拟议的估计数能够反映卖方数据的多样性和对买方的相关性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
39+阅读 · 2020年9月6日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员