The Serverless Computing is becoming increasingly popular due to its ease of use and fine-grained billing. These features make it appealing for stateful application or serverless workflow. However, current serverless workflow systems utilize a controlflow-based invocation pattern to invoke functions. In this execution pattern, the function invocation depends on the state of the function. A function can only begin executing once all its precursor functions have completed. As a result, this pattern may potentially lead to longer end-to-end execution time. We design and implement the DFlow, a novel dataflow-based serverless workflow system that achieves high performance for serverless workflow. DFlow introduces a distributed scheduler (DScheduler) by using the dataflow-based invocation pattern to invoke functions. In this pattern, the function invocation depends on the data dependency between functions. The function can start to execute even its precursor functions are still running. DFlow further features a distributed store (DStore) that utilizes effective fine-grained optimization techniques to eliminate function interaction, thereby enabling efficient data exchange. With the support of DScheduler and DStore, DFlow can achieving an average improvement of 60% over CFlow, 40% over FaaSFlow, 25% over FaasFlowRedis, and 40% over KNIX on 99%-ile latency respectively. Further, it can improve network bandwidth utilization by 2x-4x over CFlow and 1.5x-3x over FaaSFlow, FaaSFlowRedis and KNIX, respectively. DFlow effectively reduces the cold startup latency, achieving an average improvement of 5.6x over CFlow and 1.1x over FaaSFlow
翻译:暂无翻译