Bayesian and other likelihood-based methods require specification of a statistical model and may not be fully satisfactory for inference on quantities, such as quantiles, that are not naturally defined as model parameters. In this paper, we construct a direct and model-free Gibbs posterior distribution for multivariate quantiles. Being model-free means that inferences drawn from the Gibbs posterior are not subject to model misspecification bias, and being direct means that no priors for or marginalization over nuisance parameters are required. We show here that the Gibbs posterior enjoys a root-$n$ convergence rate and a Bernstein--von Mises property, i.e., for large n, the Gibbs posterior distribution can be approximated by a Gaussian. Moreover, we present numerical results showing the validity and efficiency of credible sets derived from a suitably scaled Gibbs posterior.
翻译:Bayesian 和其他基于可能性的方法要求对统计模型进行规格说明,而且可能不能完全令人满意地推断数量,例如量子,这些数量并非自然地界定为模型参数。在本文中,我们为多种变式孔子建造了直接和无模型的Gibbs 后座分布。作为无模型手段,Gibs 后座的推论不受模型错误区分的制约,直接意味着不需要骚扰参数的先行或边缘化。我们在这里显示Gibbs 后座的汇合率和Bernstein-von Mises 属性,也就是说,对于大的 n,Gibbs 后座分布可以被高斯人近似。此外,我们提供了数字结果,表明从适当缩放的 Gibs 后座图中获得的可靠数据集的有效性和效率。